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CHAPTER I. INTRODUCTION 

Problem Statement 

In a hydraulic dredging project, the cost for disposing dredge ma­

terial contributes a significant portion to the total cost. Dikes, 

grading, seeding and easements accounted for 19 to 25 percent of the 

total cost of recent western Iowa dredging projects. A nationwide sur­

vey showed that the disposal cost generally ranges from 15 to 20 percent 

of the total project cost; however, it may be as high as 35 percent if 

the dredging size is small (Gallagher and Company, 1978). This cost 

probably will go even higher in the future because of the increasing 

scarcity of disposal areas. The central issue is then on how to design 

an efficient, adequate containment for dredged materials. 

Prior to 1970, the dredge spoil containments were sized assuming 

that the excavated material will occupy more space in a fill than in-

situ because of the mechanical disturbance of dredging process and the 

removal of overburden pressure. Depending upon the texture of sediment 

to be dredged, bulking factors of 1.0 to 2.0 were applied to estimate the 

required volume of the facility. While this design approach was easy, 

uncertainty and dissatisfaction were associated with the use of these 

bulking factors because they depended heavily on practical experience 

and local conditions. It was observed that by using these factors some 

containments have been undersized by as much as 50 percent, and the 

others oversized by as much as 100 percent CLacasse et al., 1977). 



www.manaraa.com

2 

Because materials discharging into the disposal area are in a 

suspension of water, a scientific approach to the containment design 

problem requires study of the dredged materials' behavior. Sedimenta­

tion of particles has been studied for decades in many disciplines other 

than geotechnlcal engineering; these include mining and métallurgie 

engineering, chemical engineering and sanitary engineering. Some ideas 

from these other disciplines have been borrowed by geotechnlcal engineers 

and used in their containment designs. Unfortunately, most of the models 

proposed in these studies deal only with the "sedimentation" phenomenon 

in which the particle weight is solely supported by hydrodynamic forces 

and no effective stress exists. When the settling particles eventually 

come into contact to form a three-dimensional, interconnected lattice, 

effective stresses are developed and sedimentation models fall. Hence, 

studies on the settling behavior of suspensions should consider a model 

which includes consolidation as well as sedimentation. 

Background on Dredge Slurries 

Hydraullcally dredged sediments are mixed with ambient water, sucked 

into a centrifugal pump, pushed through hundreds or even thousands of 

feet of pipe, and discharged into a containment at velocities of about 

15 ft/sec. As a result of the mixing with water and the mechanical 

disturbance associated with the operations, the volume of the sediments 

Increases; however, after sufficient time in the containment, it is pos­

sible that the materials will occupy less volume due to the disruption 
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of flocculent structure and consolidation. 

Before 1970, the volume of dredge spoil was estimated largely by 

rule of thumb of multiplying a bulking factor with the volume of sedi­

ments being dredged. Generally, a value of 1.0 was assigned for sand, 

1.25 for sandy clay, 1.45 for clay, 1.75 for gravel and rock, and 2.0 

for silt as the bulking factor for immediate disposal (Huston, 1970). 

Later, the shrinkage of dredge materials due to long term settlement 

was considered in design, and a "settlement factor" was usually combined 

with the bulking factor to yield a sizing factor for the containment. 

According to the practice of several U.S. Army Corps of Engineers dis­

tricts, the sizing factor ranges from 0.6 to 1.3 for sand and silt, and 

from 1.0 to 2.0 for clay (Laçasse et al., 1977). As for the determina­

tion of the detention time required to allow the solids to settle out 

of the water, the method employed was the same as the one used in sani­

tary engineering; i.e., assuming particles are spherical and settle ac­

cording to Stokes' law. 

This approach does not account for the fact that dredge materials 

will behave differently in different settling environments or under 

different operational concentrations. Also, clay particles are flake or 

plate shaped rather than spheres, and the material will eventually con­

solidate under its own weight. Recognizing the need for more scientific 

approaches to the problem of designing dredge spoil containment facili­

ties, the U.S. Army Corps of Engineers sponsored research at Waterways 

Experiment Station (WES) In Vlcksburg, Mississippi. Between 1975 and 
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1978, this research resulted in over 20 reports covering various aspects 

of dredge spoil containments and provided a major advance to state-of-

the-art design. Palermo et al. (1978) summarized the results of the WES 

research and provided containment design and management guidelines. 

The methodology developed by WES for design of dredge spoil con­

tainments requires both a sedimentation test and a consolidation test. 

Grab samples from the proposed dredge area are mixed mechanically with 

water to the operational concentration and pumped into a settling column. 

The mixing and pumping of the slurry is similar to the disturbance that 

the sediment experiences in the dredging operation, whereas the behavior 

of the slurry in the column simulates conditions in the containment area. 

The settlement of the slurry sample in the column is observed periodi­

cally, and after sedimentation has finished, samples are taken from slurry 

at the bottom of the column for a consolidation test. 

To explain the sedimentation behavior, the WES has used the ter­

minology from mining engineering (Fitch, 1962) in which the settling 

is classified into three categories according to the degree of solid 

concentration and interparticle cohesiveness; 1) discrete settling, 

2) flocculent settling, and 3) zone settling. In discrete settling, 

particles settle individually with constant rate, whereas in flocculent 

settling particles agglomerate to form floes and settling rate increases 

with time. In zone settling, particles agglomerate further and settle 

as a three-dimensional lattice. Because the concentration in most 

dredging operations average as high as 145 g/1 (Montgomery, 1978), dis-
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Crete settling seldom occurs. According to the WES approach, if an 

interface between settling solids and the clear, supernatant water is 

formed during the test, the phenomenon is said to be in zone settling. 

The design criterion is then based on the work by Coe and Clevenger 

(1916). If no sharp interface is formed, the slurry is said to be in 

flocculent settling, and the design criterion is based upon the approach 

proposed by Mclaughlin (1959). Both criteria are used to design con­

tainments with sufficient areas and detention times to accommodate con­

tinuous dredge disposal activities and remove sufficient suspended 

solids. As for the consolidation analysis, the WES approach requires 

the sediment samples used in the settling tests also be subjected to con­

solidation tests. The test procedure is the same as the conventional con­

solidation test except that very low loading stresses are used. The 

results are interpreted according to one-dimensional consolidation 

theory (Terzaghi, 1925) to estimate the volume and time rate of the 

dredge material's consolidation under its own weight. 

The development of self weight consolidation theory (Gibson et al., 

1967; Lee and Sills, 1981) provides a refinement for describing the 

settlement mechanism and should result in a more rational containment 

design approach. The self weight consolidation theory differs from con­

ventional one-dimensional consolidation theory in two distinct aspects: 

1) no external load is applied to induce settlement; gravitation is the 

only driving force and 2) large strains occur in the process. Because 

the dredge material always experiences a large amount of strain during 
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consolidation, the assumption that the soil boundaries are fixed, as 

In the conventional consolidation theory, does not hold. Thus, the 

self weight consolidation theory should predict the material settling 

better if used in the WES approach. 

Several researchers (Fitch, 1962; Gaudln and Fuerstenau, 1962; 

Michaels and Bolger, 1962) observed that in zone settling there was 

no jockeying for position by the particles, and the material settled as 

a plastic structure. If all the settling particles are locked into a 

three-dimensional lattice when zone settling starts, it is reasonable 

to conclude that consolidation process also begins at this moment. The 

existence of the lattice Implies the existence of effective stresses. 

Although experimental proof of the existence of effective stress is quite 

difficult, the observed zone settling behavior is similar to that pre­

dicted by self weight consolidation theory. This suggests that the 

zone settling phenomenon can be described and analyzed according to the 

self weight consolidation theory which is in contrast to interpretations 

made in previous research. This alternative to the WES approach should 

put the settling column tests on a more rational basis and result in 

more accurate estimates of the time rate of settlement. Another implica­

tion of this hypothesis is that the results of the settling column tests 

can be directly used to predict the long term settlement behavior of the 

spoil thereby removing the need for conventional consolidation tests. 
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Literature Review 

The sedimentation mechanism of a solid water system has been studied 

for more than a century since the pioneer work done by Stokes. General­

ly, the study has advanced in three major fields: mining and métallurgie 

engineering to treat ore pulp, chemical engineering to examine chemical 

precipitation, and sanitary engineering to handle sludge or solid waste. 

The developments in these disciplines are useful for studying the 

settling behavior of the dredge materials; therefore, pertinent litera­

ture from these three fields is reviewed and synthesized in the following 

paragraphs. The model for flocculent and zone settling deal only with 

the sedimentation process and fall to include the consolidation process. 

To provide a more complete study, literature on self weight consolida­

tion theory is also incorporated in the review. 

Coe and Clevenger (1916) were the first to describe the flocculent 

settling phenomenon. They assumed that shortly after a settling test 

starts, four distinct zones are formed as shown in Figure 1.1. From top 

to bottom they are: 

A. Zone of clear water 

B. Zone of constant concentration which settles at a 
constant rate 

C. Transition zone with concentration decreasing from the 
bottom (top of zone D) to the top (bottom of zone B) 

D. Compression zone in which the floes are brought so close 
together that they rest directly upon one another, and 
further elimination of water is a function of time. 
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Figure 1.1 shows the development of these four zones at various stages 

of a settling test. Because of the marked concentration difference be­

tween A and B, an interface forms, as indicated in Figure 1.1 (II). The 

settling of the interface manifests the behavior of zone B until B 

diminishes (II, III, IV). After C has disappeared (V), the whole system 

undergoes a compression process (called "consolidation" elsewhere in 

this study), and eventually stops settling (VI). To explain this mech­

anism, Coe and Clevenger (1916) postulated that any layer has a capacity 

of discharging solids corresponding to its concentration and settling 

velocity. If the layer has a lower discharge capacity than the overly­

ing layer, the layer will gain solids and expand its thickness and 

eventually dominate the settling behavior of the whole system unless the 

supply-discharge trend is changed. Coe and Clevenger prescribed a 

series of batch settling tests at various concentrations to obtain the 

concentration vs. settling rate relationship from which the solids dis­

charging capacity could be calculated, and the design of an ore pulp 

thickener is to provide sufficient area to assure that the supply rate of 

solids is less than the discharge capacity of the limiting layer. Con­

ceptually, the Coe and Clevenger approach is based upon the continuity 

equation. In a continuous pulp thickener, a steady state usually occurs, 

and different zones maintain constant positions and concentrations. In 

this type of thickener, the concept of solids discharging capacity is then 

suitable for describing the settling behavior of material. In a thickener 

where bottom withdrawal is not possible and concentration varies with 
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time and position, this approach Is not useful. 

A mathematical formulation for the thickening mechanism was derived 

by Kynch (1952) on the bases that the settling rate, v, of particles 

depends on the local concentration c, particles are of same size and 

shape, and no flocculatlon occurs. The concentration term, c, was de­

fined as the number of particles per unit volume of the dispersion. 

Using the continuity equation, Kynch (1952) mathematically showed 

that any concentration layer in the settling column can propagate up­

wards with a velocity, U, according to U = -ds/dc, where s is the 

particle flux, which is defined as the number of particles crossing a 

horizontal section per unit area per unit time, or s = cv. If the 

settling velocity of particles is a function of concentration, c, only, 

the particle flux, s, and therefore the propagating rate U, is also a 

function of c only. Because the original concentration is preserved 

when the layer propagates through the suspension, the resulting path will 

be linear in the height (H) - time (t) coordinates indicating a constant 

U (Figure 1.2). 

During the settling test, both the particles and the interface are 

falling, while the concentration layers are moving upwards. Thus, all 

the particles, originally between the Interface and a certain layer, 

will fall through that layer when the layer meets the interface. Using 

this concept, the settling behavior of the Interface can he predicted. 

Kynch (1952) showed that if a settling column test starts out with a 

uniform initial concentration, c^, all the upward propagating paths are 



www.manaraa.com

10 

I II III IV V VI 

Figure 1.1. Four settling zones at various stages of a settling test 
(after Coe and Clevenger, 1916) 

w 

vc Descending path of the interface 

I • Upward, propagating paths of 

concentration layers 

0 t, 
Time, t 

Figure 1.2. Motion of the interface and concentration layers in a 
uniform c^ test, according to Kynch theory 
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parallel, and the concentration in the sector AOB of Figure 1.2 is every­

where c^, which results in a linear H vs. t plot AB of the falling in­

terface. After point B, some higher concentration layer reaches the 

Interface, the H vs. t plot then becomes curved, and the descent of the 

interface slows. Many researchers (Gaudin et al., 1959; Fitch, 1962), 

however, found that the H vs. t plots were strongly curved even at the 

beginning of the tests. In the author's study, a linear H vs. t re­

lationship occurs only in the initial portion of some tests with low 

initial concentration of solids. This deficiency of the Kynch theory 

is that the theory works with the particle and layer velocities in a 

purely mathematical fashion and neglects physical phenomemon. For ex­

ample, in Figure 1.2, the concentration profile at time t^ is idealized 

as uniform from the interface, C, to certain depth, D, by the Kynch 

approach, whereas in real tests it seldom happens this way (e.g., see 

Been and Sills, 1981). Also, depending on the c^, the dredge material 

will settle either as floes or as a three-dimensional lattice structure, 

but not as individual particles. The applicability of Kynch theory seems 

rather doubtful. 

Talmage and Fitch (1955) applied Kynch theory to the design of 

thickeners. For many years, this procedure has been used for thickener 

design in many disciplines. They assumed that a layer of any concentra­

tion, Cj^ > c^, is formed instantaneously at the bottom of the column at 

the onset of thickening. If the layer reaches the slurry-water inter­

face, all solids in the column must have been "sieved" through this layer. 
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According to this argument, a simple material balance equation can be 

made, and from a single settling column test result, the c vs. v rela­

tionship can then be obtained, and the thickener design is possible. 

This approach implies that the settling curve is unique for a given ma­

terial; i.e., the settling behavior of high c^ suspension can be obtained 

from the later portion of the low c^ test. As will be discussed in 

Chapter III, this is not supported by most of the author's tests on lake 

sediment. In addition, the concentration of the bottom layer gradually 

increases with time due to particle accumulation, instead of being in­

stantly achieved. 

Talmage and Fitch (1955) also compared the Kynch approach with the 

Coe and Clevenger method and found that the two methods agree in the low 

concentration range but diverge as concentration increases. This diver­

gence, by their argument, was attributed to (Talmage and Fitch, 1955): 

The Coe and Clevenger test procedure, how­
ever, entails an additional assumption 
which is not necessarily valid and which 
is not contained in application of the 
Kynch analysis. The Coe and Clevenger 
test procedure ... assumes that the 
settling characteristics of the floe will 
be independent of the initial solids con­
centration in the pulp in which they are 

formed. 

Therefore, Talmage and Fitch concluded that the Kynch approach is prefer­

able. However, Coe and Clevenger prescribed a series of batch settling 

tests that result in an initial concentration vs. settling rate relation­

ship. On the contrary, the Kynch approach inherits the assumption that 
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the settling characteristics of the floe are independent of the initial 

concentration because it generates the c vs. v relationship from only one 

settling column test result. The assertion and conclusion made by Tal-

mage and Fitch does not seem correct. 

Fitch (1962) classified the settling behavior of slurries into four 

categories according to the degree of solid concentration and inter-

particle cohesiveness: 

A. Clarification, Class 1; is called discrete settling else­
where. It occurs when no interparticle cohesiveness exists; 
e.g., sands and gravels, or cohesive particles at extreme­
ly low concentrations. Individual particles then settle 
independently at a constant rate. 

B. Clarification, Class 2: is equivalent to the flocculent 
settling. It occurs when the interparticle agglomera­
tion tendency is high, but the concentration is low. 
Particles agglomerate to form floes during settling and 
the settling rate of floes constantly changes. 

C. Zone settling; occurs when both the concentration and the 
interparticle cohesiveness are high. Particles are 
locked into a plastic structure and subside at the same 
rate. 

D. Compression: i.e., consolidation, occurs when the concen­
tration is so high that the particle weight is no longer 
supported solely by hydrodynamic force, but by particles 
underneath as well, following the Coe and Clevenger's 
definition. The transmission of force through particle 
contacts in turn puts the solids structure in a com­
pression state and causes settling. 

The factors governing the removal of solids were also studied by Fitch. 

Using experimental evidence, he found that Kynch's assumption is not com­

pletely valid over the entire zone settling regime, and it is not valid 

at all in the consolidation regime. Therefore, Fitch (1962) concluded 

that the Coe and Clevenger approach seems preferable, although he did it 
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reversely in 1955. 

The first nondestructive concentrations measuring device, named 

"Transviewer" was constructed by Gaudin and Fuerstenau (1958). This in­

strument enables researchers to more precisely measure the concentra­

tion at any specific time and location in the settling column test. The 

settling behavior of the material can then be studied without extracting 

any slurry for concentration measurements. The theory of the device is 

that when X-rays are sent through a suspension, part of their intensity 

will be lost due to the absorption of the suspension. A counter is used 

to pick up the quantity of X-rays transmitted, which theoretically is 

related to the density, y, of the suspension as; 1 = 1^ exp(-y^ • Y * d), 

where is the mass absorption coefficient which is a function of the 

atomic numbers of constituent elements.of the solids, d the diameter of 

the column, the reference intensity, I the intensity recorded. If 

the energy level of the incident X-rays is kept high and stable enough, 

the dependence on atomic number can be neglected. The transmitted X-ray 

intensity is then uniquely related to the density of the suspension, and 

the concentrations can be easily obtained by the readings recorded by the 

counter. A problem concerning the use of the X-ray Transviewer is that 

one has to compromise between the travelling speed of the X-ray and the 

time constant of the counter in order to obtain a satisfactory measuring 

accuracy and spatial resolution combination. Nevertheless, the settling 

mass in this case is not disturbed by the insertion of measuring device 

or by the removal of solution for concentration measurement as in conven­

tional tests. 
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Using the Transviewer, Gaudin and Fuerstenau (1962) observed the 

zone settling of a thick suspension as: 

The mass is considered to be settling as an 
aggregate network or as one large floe,.... 
Furthermore, it seems that this single floe 
is in a state of compression from the be­
ginning of settling, and that two phases of 
compression settling exist during sedimenta­
tion. The first occurs during the early 
stage of settling where liquid exudes easily 
and rapidly from the floe, while the second 
occurs in the compacting portion of the floe 
where water escapes more slowly and with 
much more difficulty. 

This phenomenon is identical to what is called "consolidation" in soil 

mechanics. Hence, zone settling behavior may be alternatively described 

by consolidation theory. As will be discussed later in this chapter, 

the variation of escaping rate of fluid (called "permeability" in soil 

mechanics) during consolidation can also be included using self weight 

consolidation theory. However, Gaudin and Fuerstenau (1962) considered 

it as "a filtration phenomenon in which a pulp thickens by filtration of 

its contained liquor through the aggregate network of pulp above it." 

To model these behaviors, Gaudin and Fuerstenau assumed that the consoli­

dating body is mechanically equivalent to a deformable solid containing 

numerous vertical tubes and tubules where tubules are conduits with much 

smaller diameter than the tubes. Filtration of water through tubes is 

completed at an early stage, whereas flow through tubulues continues 

indefinitely. Since the size of tubes and tubules varies randomly, a 

proper size distribution function must be assigned. For this, they ac­

cepted the Schuhmann size distribution. The Schuhmann distribution is 
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described by the equation: y = (x/G)™, where x is the tube size, y the 

cumulative fraction of all tubes with size between 0 and x, and G the 

maximum tube size. The quantity of fluid flowing through tubes can be 

calculated from Poiseuille's law, i.e., if a fluid with viscosity y 

flows through a tube having diameter of x, the average flow rate, q, can 

be expressed as; 

dl 128y 

where dp/dl is the pressure gradient in direction 1. Gaudin and 

Fuerstenau defined it to be the excess weight of solids per unit area; 

i.e., dp/dl = c(G^ - 1)Y^ where c is the concentration expressed in 

term of percent by volume, G^ the specific gravity of the solids, and 

the unit weight of water. Combining Equation 1.1 with the Schuhmann 

distribution then integrating q as a function of x from 0 to G, the whole 

size range of tube diameters, a theoretical expression for the filtra­

tion rate per unit area can be obtained as: 

According to Gaudin and Fuerstenau, the filtration rate of water 

can also be determined experimentally by the following steps. From 

Transviewer records, the concentration readings at any time and location 

can be calculated. It is then possible to draw a family of contour 

lines of equal concentration on the height (H) - time (t) coordinates. 

Concentration profiles at different time periods are provided from the 

Transviewer data. Because no jockeying for position by particles occurs. 
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the descending path for a thin layer above which a certain percentage 

of the total solids remain can be traced on the H-t coordinates. By 

doing this repeatedly for various percentages, a system of settling 

curves can be drawn (Figure 1.3). The settling velocity or, equivalent-

ly, the filtration rate of water, at any point is simply the slope of 

the settling curve at that point. The corresponding concentration value 

can be read from the iso-concentration lines, and the Q versus c rela­

tionship is then established. 

The main difficulty in applying the Gaudin and Fuerstenau's model 

is that neither m, nor G can be determined independently by these test 

results. Gaudin and Fuerstenau (1962) suggested that assuming if m = 

1.0 the maximum tube sizes, and therefore the size distributions, under 

different concentrations can be obtained by putting the experimental 

Q vs. c relationship in the theoretical expression for Q, Equation 1.2. 

Using the obtained size distributions, they back calculated the filtra­

tion rates, Q, for several pulp concentrations and found that the Qs 

agreed well with the experimental ones. Gaudin and Fuersteanu then con­

cluded that the Schuhmann function is proper for describing the size 

distribution of pores. However, it is the author's opinion that their 

conclusion is erroneous; because the experimental Q vs. c relationship 

is used to determine the size distribution, and therefore it should not 

he reused to check the suitability of the assumed size function. Never­

theless, the tube model provides an insight into the settling mechanism. 

The implication of this model will be discussed in the synthesis of the 
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reviewed literature. 

Michaels and Bolger (1962) interpreted the settling mechanism of 

clay minerals in terms of particle-particle interactions. Because the 

surface characteristics of kaolin and the microstructure it forms in a 

suspension have been frequently studied, flocculated kaolin suspensions 

were selected for their study. Michaels and Bolger postulated that the 

basic units in settling are not particles but floes which have mechanical 

strength to resist the viscous shear and maintain their identity during 

settling. In a quiescent settling environment, clusters of floes may 

agglomerate to form aggregates or even lattice structure depending 

on the local clay concentration. According to their test observations, 

the aggregates fall individually, roughly in spherical shape in low con­

centration suspension. The settling behavior can then be described by 

Stokes' law, but the size formed seems to be governed by two counter­

acting factors: the collision of aggregates which makes the size grow, 

and the viscous shear force in the fluid which breaks down the aggre­

gates. Hence, it is a dynamic property, rather than a fundamental floc-

culation phenomenon. Using different mixing methods, they found that 

strong mixing usually produces large aggregates and yields higher settling 

rate. 

Further, Michaels and Bolger tried to model the settling behavior 

of a high concentration suspension. They assumed that in the early 

settling period the concentration in the upper kaolin laden zone is con­

stant, and the zone can be considered as a plug of slurry. The submerged 



www.manaraa.com

21 

weight of the plug, F^, is 

Fp = ̂  Al g(Pg - p^) c, (1.3) 

where d is the diameter of settling column, Al the length of the plug, 

c the concentration in the plug, and F^ is supported by: 

(A) resisting force of underlying material: 

- I Oy (1-4) 

(,B) shear forces at the wall; 

F, = ïïdAlT (1.5) 
b y 

(C) force due to pressure gradient which generates 
the flow through plug: 

where and are the compressive and shear strength of the lattice 

structure respectively, and dp/dl is the pressure gradient. By Cozeny-

Carman and Poiseuille Equations, the pressure gradient term can be ex­

pressed as: 

V 1 ^3 . a.7) 
n 

where C is the shape factor of pores, L the tortuosity, s the specific 
s p 

area of pores, and n the porosity. At equilibrium condition, F = F + 
P & 

F + F . An expression for the settling velocity v can thus be obtained, 
b c 
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Basically, the working mechanism of the above model is similar to 

that of the Gaudin and Fuerstenau model, but the additional force terms, 

e.g., wall friction and under support, provides a means to account for 

the effect of column size and initial slurry height. The model predicts 

that the settling rate increases as the slurry height increases. The 

settling rate also increases with column size, though the effect is small. 

This, however, is contrary to the recent experimental results by Mont­

gomery (1978). Montgomery observed that at high concentration in zone 

settling, column diameters less than 8 in. resulted in higher settling 

velocities than that in larger columns. This indicates that wall fric­

tion which retards the settling might be too small to be significant 

or that the wall slurry interface may provide less resistant passage­

ways for pore water to escape. Because the rate of pore water dissipa­

tion is an indication of settling rate in the consolidation regime, the 

behavior observed by Montgomery suggests that zone settling is actually 

a self weight consolidation phenomenon. 

Although some of the aforementioned researchers did notice the 

existence of consolidation, their models have no capability of describ­

ing it. Recently, this problem was studied by Hayden (1978) of WES. 

According to Hayden's argument, a high concentration suspension will 

pass through three distinct phases during the process of settling. The 

early phase is a period of agglomeration which results from particle 

flocculation. If the height of the slurry-supernatant water interface, 

H, in this period is plotted against time, t, with H as the ordinate and 
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t as the abscissa, a convex upward relationship will result, indicating 

an acceleration in the settling rate. The second phase consists of zone 

settling when the interface height varies linearly with time. The 

period of constant settling is then followed by a transition period. 

After that, the whole slurry enters into the last phase of consolidation. 

The settling behavior of the material in the last phase is governed by 

one-dimensional consolidation theory. 

Hayden also proposed a method for calculating the volume change of 

slurry due to self weight consolidation. He assumed that the self weight 

consolidation of a layer with initial height H^, and initial void ratio 

e will be caused by an effective stress of: 
o 

\ "o (I-S) 
o 

acting on the layer, in Equation (1.8) is the average effective 

stress acting at the midheight of the layer. A series of one-dimensional 

consolidation tests with a suitable range of loading stresses is per­

formed to construct the experimental e-log O curve. The void ratio at 

the end of primary consolidation, e^^^, is obtained by interpolating 

in e-log a curve. The final slurry height is calculated as; 

H ("100 + "'"oV a,) 
100 + gg(l - p„) • 

where is the percent solid by weight in the original suspension. The 

slurry height at the beginning of consolidation, H^, can be obtained 

graphically from the settling curve of the interface by extending the 
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tangent to the zone settling portion of the curve to intersect the 

tangent to the consolidation portion of the curve. The slurry height 

corresponding to the point of intersection is The volume change of 

slurry in a disposal site which results from consolidation is then: 

AV = A (H^ - , CI. 10) 

where A is the area of the dispoal site. According to Hayden, this 

volume is the amount of containment capacity regained due to the long 

term settlement of the slurry. 

Parallel to Hayden's work, Montgomery (1978) of WES studied the 

short term settling behaviors of the slurry and proposed a method for 

designing containments with sufficient areas and detention times to 

accommodate continuous dredge disposal activities and provide sufficient 

suspended solids removal. He suggested a settling column with 8 in. in­

side diameter and 6 ft. height, to be used for the sedimentation study. 

If a sharp interface is formed during the settling test, the slurry is 

said to be in zone settling. Although this phenomenon did sometimes 

occur in fresh water environment, Montgomery classified it as salt water 

settling. Design criterion in this case is based on the concept pro­

posed by Coe and Clevenger (1916); i.e., to provide an adequate area so 

that the continuous discharging of slurry will not cause any concentra­

tion higher than the design concentration. If no sharp interface is ob­

served, the slurry is in flocculent settling, and then design approach 

is that proposed by Mclaughlin (1959). First, concentration profiles at 
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several time periods after the test has started are plotted according 

to the concentration measurement data. Comparing these profiles with the 

initial one, a family of curves showing the relationship between percent 

solids removal and time at different depths can then be constructed. 

Knowing the requirement for returned water quality and the ponding depth, 

the detention time can then be obtained by interpolation. 

The settling mechanism proposed by the WES studies separates the 

consolidation process from the sedimentation process. In reality, how­

ever, these two are quite inseparable. Usually, the bigger floes may 

have already settled to the bottom of the column and started consolidat­

ing, while the smaller floes are still settling in suspension. In addi­

tion, this long term settlement analysis inherits all the shortcomings 

of the conventional one-dimensional consolidation theory. 

Because gravitation force is the sole agent which causes dredge ma­

terial to settle, and the strain resulting from this settlement is 

generally very large, the volume change behavior of the dredge material 

ought to be best described by the self weight consolidation theory. The 

equation governing large strain consolidation behavior was formulated by 

Gibson et al. (1967). Consolidation parameters are considered to vary 

during consolidation, and void ratio, e, is not uniform throughout the 

sample thickness. The limitation of fixed soil boundaries as prescribed 

in conventional consolidation theory is removed. Because of the moving 

boundary, the Lagrangian coordinate system is convenient for describing 

the consolidation behavior. 
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Lagrangian coordinate system refers all events back to the initial 

t = 0 configuration. Consider a soil layer with a configuration as shown 

in Figure 1.4(a) before the consolidation starts. The position of ma­

terial points within its domain is described by a space coordinate a. 

For example, the datum plane has a position of a = 0, which is assumed 

to be fixed. The top boundary is at a = a^. A thin element of soil (A^ 

B  C D )  c a n  b e  d e f i n e d  b y  i t s  d i s t a n c e ,  a ,  f r o m  t h e  d a t u m  p l a n e  a n d  
o o o 

its thickness 5^. After some time t, the soil layer has a new configura­

tion as shown in Figure 1.4(b) due to consolidation. The top boundary 

has moved, and the element of soil occupies a new position (A B CD). 

A new position coordinate Ç, called convective coordinate, is then used 

to locate the material points [Figure 1.4(b)]. However, inconvenience 

arises from the use of ^-coordinate because Ç itself is a function of the 

space coordinate, a, and time, t. If the element is labelled according 

to its initial position a, which is independent of time, throughout the 

consolidation process; e.g., the upper boundary is always considered as 

at a = a^ rather than at its current location, C(a^» t), the description 

of the system and the introduction of boundary conditions will be great­

ly facilitated. This labelling system is called the Lagrangian coordinate 

system. 

Another coordinate z, called material coordinate or reduced coor­

dinate, which labels only the particles, is defined as; 

z(a) = ( (1.11) 

/Q ^ o 
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where e^ is the void ratio distribution at t = 0, which varies with 

position a. Equation 1.11 also implies: 

If • ifr 
o 

If the permeability K is assumed to be a function of void ratio only, 

i.e., K = K(e), the generalized Darcy's law can be expressed as: 

"''f - V * -It 
where: n = porosity at time t 

Vj = velocity of fluid 

Vg = velocity of solid 

u = excess pore pressure, can be expressed as u = a - a' - u^ 
where a is the total stress, cj' the effective stress, 
and u^ the hydrostatic pressure 

To work with Equation 1.13, a transformation equation between the con-

vective coordinate Ç and the Lagrangian coordinate a is needed. From 

Figure 1.4, the transformation can be expressed in a derivative form as; 

i - Hi-
o 

If both fluid and solids are incompressible, the equilibrium in vertical 

direction requires : 

II + (e Pg + Pg) = 0 (1.15) 
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where and are the unit weights of pore fluid and solids, respec­

tively. To ensure the continuity of fluid flow, the following equation 

must be satisfied: 

Combining Equations 1.13, 1.15 and 1.16 in terms of z-coordinate, it 

results : 

P 
(IS _ 1) JL r_L_l . ̂  + A r_K__ . iËl . 
p^ de 11 + eJ 8z 3z I p^(l + e) de 

(1.17) 

Equation 1.17 is the general equation governing the large strain con­

solidation, which was derived by Gibson et al. (1967). 

To obtain an analytical solution, Lee and Sills (1981) assumed 

that; 

(A) the permeability K increases linearly with void ratio, or 

K = p^ K^(l + e) (1.18) 

where K is constant. 
o 

(B) the coefficient of consolidation, C^, defined as: 

- - K da' (1.19) 
F pg(l + e) de 

is constant throughout the whole consolidation process 
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Equation 1.17 then is reduced to: 

S ft - II oz 

In order to obtain Equation 1.20, the negative sign in Equation 1.19, 

which was not given in Lee and Sills' derivation, is required. The pre­

vious assumption implies that da'/de is also constant. Lee and Sills 

assumed that a' vs. e relationship to be: a' = A - ae, where A and a 

are constant. It should be noticed that both e and a* are functions of 

material coordinate z and time t. To solve Equation 1.20, the following 

conditions are imposed: 

(A) Initial conditions; Prior to self weight consolidation, 
the concentration, and therefore the void ratio, is uni­
form throughout the whole depth, and the effective stress 
is everywhere zero; i.e., 

e(z, 0) = e^ 

a'(z, 0) = 0 0 ̂  z :< z^ (1.21) 

where ib the actual material height. 

Equation 1.2l results in: 

A = Oie^, and 

a'(z, t) = aj^e^ - e(.z, t)j (1.22) 

(B) Final conditions: After the consolidation has ended, 
the effective stress is solely due to buoyant weight of 

solids because no excess pore pressure exists; i.e., 
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a'(z, 00) = (pg - - z) (1.23) 

Pg - Pf 
e(z, 00) = (z^ - z) = 

(1.24) 

3(z^ - z) 

where 3= (Pg ~ Pj)/^. 

Equation 1.24 indicates that after 100 percent primary consolidation the 

void ratio will distribute linearly from e^ at the material surface to 

e^ - at the base, as shown in Figure 1.5. 

(B) Boundary conditions; Since the effective stress is 
always zero at the material surface, the void ratio 
at there will then remain unchanged according to 
Equation 1.22; i.e.. 

e(z^, t) = (1.25) 

In setting column tests or most of the disposal sites 
for dredge material, bottom drainage is not allowed. 
The condition at the lower boundary is then; 

|H = ̂  (cj - a' - u^) = 0 

From Equation 1.15, -|^ = - (e + p^). However, 

3"li 9"h 95 _ 
3z ~ 9Ç 9z ~ ~ 

3a 
3z 
) = - Pf(l + e) 

Hence, 
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Figure 1.4. Lagrangian and convective coordinate: (a) initial con­
figuration, t = 0, (b) configuration at time t 
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Figure 1.5. Assumed initial and final void ratio distributions by 
Lee and Sills (1981) 
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- u^) = -(ep^ + pg) + Pj(l + e) 

Pf - Ps = igr = -"lî 

Thus, the boundary condition at the impervious base is: 

lî = è<Ps - Pf) = G (1.26) 

Utilizing these conditions together with Equation 1.20, Lee and 

Sills (1981) obtained an analytical solution for impervious base, which 

is: 

2 2 
cos(mTTz/z, ) C_m tt t 

i(z, t) = e^ - g^z^ - z - 2z^Z YJ—~ ^~2 )j 

(1.27) 

n m TT z^ 

where m = i(2n + 1), n = 0, 1, .... , 

and the corresponding excess pore pressure distribution is; 

(-1)^ sinlm7r(l - z/z )] 

u(z, t) = 2(p - p ) • z Z 2~2 ' 

2 2 
C m^TT t 

exp(- ) (1.28) 

=1 

Slurry height at any time, h(t), can be expressed in terms of material 

coordinate z by integrating Equation 1.27 from 0 to the total material 

height z^; i.e., 
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h(t) =j ^ j^l + e(z, t) j dz 

2 ̂  00-2 ^(-1)" 
= (1 + e )z. - igz + 2gz Z - o 

^  ^  ^  ^  " m V  

2 2 
C_m ir t 

exp( 2 ) (1.29) 

=1 

Final slurry height h(a>) is then obtained by letting t-><» in Equation 

1.29; i.e., 

h(m) = (1 + e^)z^ - igz^ 

Since the slurry height prior to consolidation is; 

h(0) (1 + e^) dz = (1 + e^) z^, 

the degree of self weight consolidation at time t, S(t), can be ex­

pressed as: 2 2 
9 9 / i\n C m TT t 

19,2_ 2gz2zl:|l3 exp(_ -I-,---) 

s(t) = h(o) - h(t) 
S(t) h(0) _ hw 

2 2 
, nvH TT t 

= 1 2—) 

® ^ ^1 ci.30) 

Cpt 
Time factor T can be defined as: T = —^ , and M = mïï. Equation 1.30 

thus becomes : ^ 
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for the impervious base, 

S(T) = 1 - 4 E exp(-M^T) (1.31) 

" M 

where M = nnr = i(2n + 1) . By the same approach except for different 

boundary condition at the base, Lee and Sills (1981) also obtained: 

for the pervious base, 

S'(T) = 1 exp(-4M^T) (1.32) 

Equation 1.28 indicates that at the onset of self weight consolida­

tion the excess pore pressure distribution generated is triangular. In 

classical consolidation theory, the problem concerning triangular initial 

excess pore pressure distribution has also been studied by Terzaghi and 

Frohlich (1936). In terms of time factor T, their solutions are: 

for the pervious base, 

S(T) . 1 - a T T \ (1-33) 

TT m=l (2m - 1) 

and for the pervious base, 

s m -  1  4 \ (1.34) 
TT m=l (2m - 1) 

2 
where T = c t/h , and c is the coefficient of consolidation. According 

V V 

to their analysis. Equation 1.34 is also the solution for any linearly 

varied initial excess pore pressure distribution with pervious base, in­

cluding the uniform one. It should be noticed that the term h in Equation 
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1.33 represents the total thickness of the soil layer, whereas that in 

Equation 1.34 only stands for half of the thickness. 

Figure 1.6 compares the S(T) vs. /t curves resulting from the clas­

sical consolidation theory with those from the self weight consolidation 

theory. An important feature is that in the case of the impervious base 

both theories predict the same consolidation behavior. This can also be 

verified by simplifying Equation 1.33, i.e., letting n = m - 1, and M = 

^(2n + 1), Equation 1.33 becomes 

32 °° f-D™ ̂  ̂  / 2 TT^ 1 
S(T) = 1 - ̂  E % exp (-(2m - 1)^ • ^ T 

TT-^ m=l (2m - 1)^ ^ ^ J 

1 - 4 Z ^ expf- |(2n + 1) ̂ t) 
n=0 (|(2n + 1)] j I 2 ^ 

= 1 - 4  Z ^ ^ exp(-M^T) , 

" M 

which is identical to Equation 1.31. For the pervious base, however, self 

weight consolidation theory predicts a higher consolidation rate than the 

classical theory does, though both S(T) vs. /T curves show an initially 

linear portion. 

In the conventional consolidation test, the Initial pore pressure 

distribution is assumed to be uniform throughout the whole sample depth, 

and drainage occurs at both top and bottom surfaces. The theoretical 

solution for this case is the curve (a) of the pervious base condition, 
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Figure 1.6. Comparison of S(T) vs. /t curves for (a) classical 
consolidation theory, (b) self weight consolida­
tion theory 
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i.e., case (B), in Figure 1.6. The WES study utilizes the test results 

to predict the time rate settlement of dredge material, which in essence 

is to simulate the consolidation behavior of case (A) by curve (à) of 

case (B) in Figure 1.6. An overestimation of settling rate in the early 

period of consolidation is expected. 

The identical result yielded by these two consolidation theories 

in the impervious base case means that the error arising from the 

linear a' vs. e and K vs. e assumptions in the self weight consolida­

tion theory is probably compensated by the error of assuming small strain 

in conventional theory. They are, however, by no means identical. In 

fact, the self weight consolidation theory is different from the conven­

tional theory by several distinct characteristics: 1) no external load, 

2) the variation of soil parameters during consolidation can be accounted 

for, 3) large strain, and 4) moving boundaries. In addition, due to the 

buoyant effect of the submerged weight of solids, the excess pore pressure 

generated initially is always triangular in shape in self weight consolir 

dation, whereas in conventional consolidation different external loading 

conditions may result in different excess pore pressure distributions. 

Furthermore, the self weight consolidation theory deals with the void 

ratio distribution and material coordinate. Thus, the slurry height (or 

solid boundary) at any time in the consolidation process can be predicated, 

e.g., by Equation 1.29, which can serve as a check of how well the theory 

can actually model the settlement behavior. The conventional theory, 

however, uses pore pressure dissipation as a basis for calculating degree 
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of consolidation and assumes the boundaries to be fixed. It is then 

not able to directly predict the slurry height h(t) by solution. 

The validity of the Lee and Sills' solution was tested experimental­

ly by Been and Sills (1981) using the X-ray Transviewer and pore pres­

sure transducers. According to their observations, none of the assump­

tions made by Lee and Sills can be experimentally justified. For example, 

the permeability, K, is roughly proportional to the void ratio e in a 

semilogarithmic fashion, i.e., log K^e, instead of linear fashion as 

assumed by Lee and Sills. The relation between e and the effective 

stress, a', is well defined when a' is high, but it is poorly defined 

when a' is low. In the extreme when a' = 0, the a' vs. e relationship is 

not unique because the bulk density at the top of the slurry, where o' 

= 0, is observed to be increasing as the consolidation proceeds. Hence, 

after 100% primary consolidation the void ratio at the slurry surface 

will result in a value e^ < e^, instead of maintaining at e^. In order 

to accommodate this real situation to the Lee and Sills' solution. Been 

and Sills (1981) assumed that the void ratio difference which occurs at 

the slurry surface can be considered as the effect resulting from the 

addition of an imaginary overburden layer. The material thickness of this 

layer is so defined that the final void ratio still distributes linearly 

with material height and has same slope, i.e., 

3(Zo - - e^, (1.35) 

where is the material thickness of the imaginary overburden layer 
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(Figure 1.7). The Lee and Sills' solution is still applicable by re­

placing for as the total material height, but the excess pore 

pressure distribution as expressed in Equation 1.28 needs modification 

because there is no excess pore pressure at z = z^ in reality. Thus, 

u^(z, t) = u(z, t) - u(z^, t) (1.36) 

where 0 ̂  z ̂  z^, and u^(z, t) is the actual excess pore pressure dis­

tribution. Under these circumstances, three soil parameters are required 

to be able to describe the self weight consolidation of material; e^, 

3 and Cp. 

From their tests. Been and Sills (1981) found that both e^ and 3 

varied nonlinearly with the initial concentration, although the soils 

used were very similar. They argued that the variation was probably 

Imaginary 

overburden 

€(Z,0) •H 

Void ratio, e 

Figure 1.7. Modified initial and final void ratio distributions 
by Been and Sills (1981) 
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due to the flocculation and particle segregation in suspensions with low 

initial concentrations. However, the behaviors of e^ and 3 were not 

examined in detail by them, and both parameters were assumed constant in 

their calculations. To determine the coefficient of consolidation, C^, 

Been and Sills used three different approaches: 

(A) Direct calculation from measured soil properties 

Since Darcy's law states that n(v^ - v^) = - Ki, and continuity 

equation ensures that v^(l - n) + v^ n = 0, the permeability K can be 

expressed as; R = -v^/i. The average fall velocity for an element of 

soil, Vg, is obtained by dividing the position change of the soil ele­

ment between two concentration profiles by the time interval, and the 

pressure gradient, i, can be estimated from the excess pore pressure pro­

files constructed by transducer measurements. The corresponding void 

ratio, e, for the soil element is calculated from its concentration. 

Thus, the K vs. e relationship is obtained. Furthermore, the a' vs. e 

relationship is constructed by concentration profiles and pore pressure 

measurement, which can generate the da'/de value at any e. Finally, the 

coefficient of consolidation is calculated by: 

(B) By comparison of pore pressure distributions. 

Isochrones of excess pore pressure both from theoretical calculation 

and actual measurement are constructed and compared. A time factor, T, 

which corresponds to a certain real clock time, t, can be found. The Cj, 
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is then calculated as: 

(C) By comparison of settlement curves. 

The experimental h(t) vs. t curve is compared with theoretical 

S(T) vs. T curve to find the T-t relation. Then, the value is cal­

culated as before. 

They also compared the results from these three approaches and 

found that the value estimated from the settlement curve is much 

higher than that given by the other two methods. The difference is ex­

pected because both (A) and (B) require an excess pore pressure distribu­

tion; whereas (C) doesn't. Been and Sills stated that the value given 

by method (A) or (B) is not a good approximation to use. 

There is another crucial problem in using the Lee and Sills' solu­

tion to interpret the consolidation behavior: how to determine the 

starting point of self weight consolidation? Theoretically, the con­

solidation process ought to begin at the onset of the development of 

the effective stress. However, to experimentally detect the existence 

of effective stress is rather difficult because it requires precise 

measurements of both density and excess pore pressure profiles. If par­

ticles are locked into a three dimensional lattice when zone settling 

starts, it is reasonable to conclude that consolidation process also 

starts from that moment. It is the author's opinion that Been and Sills 

failed to detect the early existence of effective stress, hence their 
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analysis was biased toward the later portion of the self weight consolida­

tion. 

Synthesis of Literature 

This section compares the models reviewed in the preceding section 

and studies the similarities and relationships between them so that 

the existing models can be better understood and interpreted. 

A consolidating soil body can be considered as a deformable solid 

containing numerous interconnected pores. Volume change of this body is 

then caused by the out flowing of pore water through these passageways. 

The seepage velocity v^ of water flowing through a channel can be de­

scribed by Poiseuille's law: 

V = (C — r^)i (1.38) 
a s y h 

where v^ = average seepage velocity of water through channel 

= shape factor 

r^ = hydraulic radius of channel section 

i = hydraulic gradient 

Because the apparent flow velocity v = n v^, and the permeability K = 

v/i, the equivalent permeability, K, for the channel is; 

Y 
K  =  C  ^ r ^ n  (1 . 3 9 )  

s jJ n 

where n is the porosity. Taylor (1948) suggested that in the soil sys­

tem the hydraulic radius r^ could have a form as: 
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V 
r = e "T^ (1.40) 

^ h 
where A is the solid surface exposed to flow, and V the volume of 

s s 

solid. Equation (1.39) thus becomes; 

Y 3 V 2 

f 
3 

Therefore, the permeability of the soil should vary linearly with e /I + e 

rather than 1 + e (Equation 1.18). In addition, factors like the shape 

of the channel and the specific area of solids also influence the permea­

bility. 

Equation 1.41 also implies that the model using Poiseuille's law is 

physically equivalent to the model using Darcy's law as far as the mechan­

ism of pore water flow is concerned. For example, the filtration (or 

seepage) rate per unit area obtained by the Gaudin and Fuerstenau's model 

is: 

c(iG - 1)y _ 

q- %2y % : 2 G 

The hydraulic gradient i can be defined as: 

i = = c(Gg - 1), 

thus the equivalent permeability K for this system is; 

Because Gaudin and Fuerstenau (1962) assumed that all the channels are 
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circular in shape, and the tube sizes follow the Schuhmann function, 

the expression for permeability K in Equation 1.42 is somewhat different 

from the general form, i.e.. Equation 1.41. 

In sedimentation, the submerged weight of solids is supported by 

hydrodynamic forces. However, once the three-dimensional lattice is 

formed, the weight of solids is supported initially by the pressure 

generated within pores and later is shared by the soil skeleton and the 

pore fluid. At the onset of consolidation, the excess pore pressure dp 

generated by a layer of suspension with thickness dl is: 

c dV(G - 1)y„ 
dp = — = 1 = c(G - 1) dl • Y 

A A s 'w 

where c is the solid concentration expressed in terms of percent by 

volume. The resulted pressure gradient is: 

^ = c(Gg - 1)Y„, (1-43) 

which is exactly the same as that assumed by Gaudin and Fuerstenau 

(1962). 

From the above discussions, it can be seen that Gaudin and Fuer­

stenau' s model is similar to the self weight consolidation model. Never­

theless, when the consolidation process starts, and the effective stress 

begins to develop. Equation 1.43 no longer holds, and the settling be­

havior then can only be described by the self weight consolidation 

theory. 

By assuming that both permeability K and effective stress a' are 
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linear functions of void ratio e, Lee and Sills (1981) have solved the 

self weight consolidation problem. The solutions they obtained for the 

impervious base are Equations 1.27 and 1.28. Equation 1.27 indicates 

that at slurry surface, where z = z^, the void ratio remains unchanged 

throughout the whole consolidation process. However, in reality the 

void ratio will reduce from e, to e at the surface. In order to accom-
X O 

modate this real situation to the Lee and Sills' solutions. Been and 

Sills (1981) considered that the void ratio difference at the slurry 

surface is due to the effect of adding an imaginary overburden layer 

(Figure 1.8). By doing this, the Lee and Sills' solutions are still 

applicable if the actual material height is replaced by the modified 

material height z^, where z^ = z^ + (e^ - e^)/3. Equation 1.27 then be­

comes : 

e(y, T') = e. - - z - 2z^ E . 

m "iï 

exp(-m^7r^T')j (1.44) 

for the void ratio distribution, and the corresponding pore pressure 

distribution. Equation 1.28, turns out to be; 

u(y, T') = 2(Pg - Pg) z^g cos(m^) exp(-m^fr^T'), (1.45) 

m IT 

2 
where y = z/z^ and T' = - t/z^. Equations 1.44 and 1.45 are graphically 

shown in Figure 1.8(a) and (b), respectively. Both equations are valid 

only for 0 < z < z^. 
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(a) (b) 

Imaginary 

overburden 

0 CQ' 

Void ratio, e 

0 

Normalized u, 

Figure 1.8. Modification of Lee and Sills' solution by Been and. 
Sills (a) void ratio distributions (b) the correspond­
ing excess pore pressure distributions 

Either Equation 1.45 or Figure 1.8(b) shows that the excess pore 

pressure at z = z^, i.e., the slurry surface, is (p^ - p^) (z^ - z^) at 

the beginning of consolidation but reduces to zero after 100 percent of 

primary consolidation. In actual settling tests, however, there is no 

excess pore pressure existing on the surface at any time. Hence, Been 

and Sills further modified Equation 1.45 to be; 

u^(z, T') = u(z, T') - u(z^, T') (1.46) 

where 0 < zjl z^, or as; 
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2 2 
u (y, T') = 2(p -p )z Z T ) miry - cos mirr) 
1 s f on ^2^2 

(1.47) 

in which, r = z^/z^, 0 ̂  y ̂  r and u^(y, T') is the excess pore pressure 

distribution in real soil. Because of the additional modification, the 

function used to describe the void ratio distribution at any time, i.e.. 

Equation 1.44, is not compatible with the function used to describe the 

excess pore pressure distribution, i.e.. Equation 1.47. The degree of 

consolidation for the modified case, S^(T'), however, should be calcu­

lated according to Equation 1.47 because it is close to the real situa­

tion. Thus, 

S (T') = 

\ uL(y, 0)dy - ( u. (y, T')dy 
-'o -*0 

m j-r 

^0 
j u^(y . 0)dy' 

Z| fSinW^r) _ r cos(mUr) ). T i _ exp(-mVT')l) 

mV_Li (1.48) 

E fsin(mirr) r cos(m'irr)i 
"I 3 3 " 2 2 j 

m ÏÏ m ïï 

It is noticed that S^(T') varies with time factor T', as well as r, the 

ratio of the real material height z^ to the modified material height z^. 

Figure 1.9 shows the plots of S^(T') vs. /T' relationship for different 

r values. For r = 1.0, i.e., no imaginary overburden layer exists, the 

consolidation behavior is identical to that obtained by Lee and Sills 

(1981). As r becomes smaller, the degree of consolidation gets higher 

for same T' value, which can be explained as the results of shorter 
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Figure 1.9. The SmCT') vs. /t' plots for different r values 
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drainage path for water to escape and thicker imaginary overburden layer 

exerting on the slurry layer. 

Summary of Literature 

Prior to 1960, the study of the settling behavior of materials was 

primarily based upon the hypotheses that materials fall through fluid 

medium as independent particles. No flocculation occurs, and the fall 

velocity of particles is a function of local concentration. Intuitive­

ly, that was an extension of Stokes' law. Using the concept of material 

continuity, simple equations relating concentration with either particle 

flux or fall velocity of particles resulted and provided the basis for 

thickener designs. These design criteria are not suitable for con­

tainment areas because dredge materials always settle as a mass or floes. 

In addition, dredge spoil will accumulate and then gradually consolidate 

under its own weight instead of being constantly withdrawn from the bottom 

as in a thickener. 

With the use of the Transviewer, the actual settling behavior of 

the material could be examined closely and researchers found that only . 

in low concentration suspensions the material settled as individual 

floes. Most of the time, it settled as a coherent mass because of 

particle agglomeration. The study of zone settling behavior thus 

emerged. Generally, the material was modelled as a porous plug contain­

ing channels through which water can flow as the material settles. How­

ever, these models could not account for the mechanism that as water 
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seeps through the solids, the particles are shoved closer together, and 

consoidation occurs. They only resulted in concentration vs. fall 

velocity relationships for thickener design. Nevertheless, these 

studies provide an insight into the actual settling mechanism. 

The WES study combined sedimentation and consolidation in the 

settling mechanism, and the approach proposed by the WES researchers 

formed a rational basis for dredge spoil containment design. However, 

the way WES researchers interpreted the settling column test results 

is not satisfactory because the actual settling behavior in the consolida­

tion regime bears little resemblance to the theoretical one-dimensional 

consolidation curve. 

The mathematical formulation for large strain consolidation has 

been established. Lee and Sills (1981) applied self weight consolida­

tion on the basis of two simple assumptions and their solution which 

describes consolidation of soil under its own weight is the most ac­

curate one to date. Their solution can also serve as an alternative way 

of interpreting the zone settling phenomenon, which may put the settling 

column tests on a more rational basis and result in more accurate pre­

dictions of the time rate of settlement. 

Objectives of Study 

The purpose of this study was to examine the settling behavior of 

dredge materials for the design of containment areas. Specifically, the 

objectives are: 
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(A) to interpret the zone settling test results on the 
basis of self weight consolidation theory. 

(B) to develop a practical approach to evaluate the ap­
parent coefficient of consolidation, Cp, for self 

weight consolidation of dredge materials. 
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CHAPTER II. SETTLING COLUMN TESTS 

This chapter is essentially a description of the laboratory test 

designed for the study of settling behavior of dredge materials, i.e., 

settling column test. Most of the test procedures follow those proposed 

by the WES. However, some modification is necessary because the WES 

distinction between flocculent settling and zone settling is somewhat 

arbitrary and can not suit the study well. 

Background of the Area under Study 

The sediment samples used in this study are all taken from Lake 

Panorama. Lake Panorama, located in Guthrie County, Iowa (Figure 2.1) 

is a long narrow impoundment, which was formed by damming a segment of 

the Middle Raccoon River in 1970. The watershed above Lake Panorama dam 

comprises about 440 square miles, with northeastern two-thirds of it 

composed of Wisconsin glacial till and the remaining areas of loess 

capped Kansan till (Schaefer, 1980). Because the lake is situated in 

an area of high sediment yields and intense cultivation, the problems 

associated with lake silting were recognized and studied. 

The original capacity of Lake Panorama was calculated to be 19,345 

acre-ft (Schaefer, 1980), whereas the hydrographie survey of 1980-81, 

conducted by USGS, resulted in a current lake volume of 14,019 acre-

ft (Lin et al., 1981). Comparison of the capacities indicates that 

5,326 acre-ft of storage capacity have been lost through sedimentation 

in the first 10-year period. Assuming a constant depositional rate of 
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Figure 2.1. Location of Lake Panorama (after Schaefer, 198Q) 
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sediment, the average annual silting rate of the lake is about 2.75% 

of the original capacity, which is high when compared to other lakes in 

Iowa. In order to prolong the useful life of the lake, some remedial 

measures have been proposed, including hydraulic dredging (Lin et al., 

1981). 

Sediment Properties 

The physical properties of the lake sediments are useful in plan­

ning dredging operations; therefore, both disturbed and undisturbed 

samples were collected from Lake Panorama for laboratory testing. 

Generally, the disturbed samples were used for engineering index proper­

ty determinations whereas the undisturbed samples were used to determine 

the dry unit weight. Engineering index tests included; Atterberg 

limits, natural water content, grain size distribution, and organic con­

tent . 

Most of the tests were done by Schaefer (1980). Results of the 

Atterberg limit tests are plotted in Figure 2.2. It can be seen that 

most of the data points fall below the A-line. According to the Unified 

Soil Classification system, the sediment is classified as being in the 

ML or MH group, i.e., silts of both low and high plasticity. The or­

ganic content of the sediment ranges from 3 to 13 percent by weight and 

averages about 7.4 percent. Figure 2.3 shows the grain-size distribu­

tion range of the sediments taken from the central portion of the whole 

lake. Texturally, the soils are mostly silts and clays. Schaefer's 



www.manaraa.com

100 

ML 

OH or 

o 
OLor ML 

60 80 

Liquid limit, % 

100 

• Sample used in 

settling test 

120 140 
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test on the undisturbed samples resulted in the dry unit weights of the 

sediment ranging from 55 pcf to 115 pcf. 

The grab samples used in settling column tests were collected from 

the proposed dredging site, at about 5.2 miles upstream from Lake Panorama 

dam. The sample has the properties of; 

Grain-size distribution: 37% clay and 63% silt 

Natural water content: 78.9% 

Dry unit weight; 50.2 pcf 

Organic content: 5.6% by weight 

Specific gravity; 2.74 

Liquid limit; 59.4 

Plasticity index; 24.7 

Soil classification: MH 

which are comparable to the Schaefer results (Figures 2.2 and 2.3). 

Test Equipment 

The following equipment is necessary for performing the settling 

column test: 

(A) Settling column - The WES study suggests that a plexi­
glass column, at least 8 in. inside diameter, and 6 ft. 
high should he used. However, in this study, a 5.5 in. 
diameter column was used because it is readily available. 
The column should have sample ports at 1 ft. intervals 
throughout the whole depth. 

(^) Portable mixer - used to mix the sediment with water to 
form a uniform slurry with desired concentration. 

(.C) Positive displacement pump - used to discharge slurry in­
to the settling column. 
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CD) Air supply - to keep the particles from settling during 
the column filling period. 

(E) Concentration measurement devices - including hypo­

dermic syringes to sample the slurry and a constant 

temperature oven to dry out the sample for concentra­
tion determination. 

Figure 2.4 shows all the equipment except the constant temperature oven. 

Test Procedures 

Because the slurry discharged into a containment area usually has 

a rather high solid concentration, it will behave either as flocculent 

settling or as zone settling. In the WES guidelines (Palermo et al., 

1978), the test procedures and design methods are different for these 

two types of settling behaviors, but the distinction between flocculent 

and zone settling is somewhat arbitrary. Generally, the WES researchers 

considered the formation of an interface during the test as evidence 

for zone settling (Palermo et al., 1978); 

Zone settling where the flocculent suspension 
forms a lattice structure and settles as a 
mass, exhibiting a distinct interface during 
the settling process. 

Also, they found (Palermo et al., 1978); 

Sedimentation of freshwater sediments at 
slurry concentration 100 g/1 can generally 
be characterized by flocculent settling 
properties. As slurry concentrations are in­
creased, the sedimentation process may be 
characterized by zone settling properties ... 
the settling properties of saltwater dredged 
material can usually be characterized by zone 
settling tests. 
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Thus, roughly speaking, the freshwater sediments are classified as 

flocculent settling materials and the saltwater sediments are considered 

as zone settling materials by the WES study, and the containment design 

follows the test results accordingly. However, the author's tests on 

the freshwater lake sediments show that the interface always forms in 

the first hour of the test even at an initial concentration as low as 

20 g/1. It is concluded that flocculent settling test alone does not 

provide enough information for the sedimentation study of the lake sedi­

ments. Hence, both the flocculent and the zone settling tests, pre­

scribed by the WES study but with some modification, were performed on 

the lake sediments. Generally, procedures for the flocculent settling 

test are: 

1. Prepare sufficient sediment for the settling test. Cal­
culate the total volume of the column, V. In order to 
achieve a desired concentration c^, the approximate 
weight of dry sample needed is c^V, or the amount of wet 
sediment required is roughly ciV(l + w), where w is the 
natural water content of the sediment. 

2. The sediment is then mixed thoroughly with tap water to 

form a uniform slurry (Figure 2.5). 

3. Pump the slurry into the settling column, while air is 
supplied from the bottom of the column to resuspend the 
falling particles. 

4. When thè filling process is finished, draw off samples at 
each sample port, using hypodermic syringes, for concen­
tration determination. The initial concentration c^ is 
taken as the average of these concentration readings. After 
the samples are taken, stop the air supply and begin the 
settling test. The lineup of the apparatus for this test 
is shown schematically in Figure 2.6. 
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Figure 2.4. Equipment for performing settling column tests 

Figure 2.5. Mixing to obtain a uniform slurry 
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Figure 2.6. Schematic diagram of apparatus for settling column tests 



www.manaraa.com

62 

5. At regular time intervals record the height of the 
interface if it has formed, and then withdraw samples 
from each sample port to determine the suspended solids 
concentration (Figure 2.7). Continue the test until 
the concentration above the interface is less than 1 
g/1. 

6. The above steps are repeated using different Cj[S ranging 
from 20 to 200 g/1. The WES researchers recommended that 
at least two tests should be performed at the proposed 
operational concentration. If the operational concentra­
tion is not available, a cj = 145 g/1 can be used. 

The zone settling test is performed according to the following steps; 

Steps 1, 2 and 3 are the same as those in flocculent 
settling test, except determine the c^ by drawing off 
three samples before the slurry is pumped into the 
settling column. 

4. When the filling process is finished, shut off the air 
supply and start the test. 

5. Observe the settling behavior of the slurry carefully. 
When a sharp interface between the sediment laden water 
and the clear supernatant water is formed, record its 
height and the time elapsed. 

6. At regular time intervals record the height of the inter­
face until the height vs. log (time) plot becomes almost 
linear. 

7. Repeat the above procedures for different c^ values. For 
the purpose of comparison, at least two tests, one on the 
high Ci side and the other on the low ci side, should be 
performed using the concentrations identical to those 
used in flocculent settling test. 

The main difference between the two tests is that in flocculent settling 

test samples are regularly withdrawn from the column for the determina­

tion of the concentration profiles, but not in the zone settling test. 
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Figure,2.7. Sample withdrawal at regular time intervals 
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Test Program 

All the tests in this study and their experimental conditions are 

listed in Table 2.1. The tests designated by "N" are performed accord­

ing to the zone settling test procedures, i.e., no sample withdrawal, 

whereas the tests designated by "W" or "L" follow the flocculent settling 

test procedures in which samples are regularly taken. Tests L-1 and 

L-2 are low initial concentration tests. It can be seen that the ini­

tial concentration used in test W-1, W-2 and W-4 are very close to those 

for N-1, N-2 and N-4, respectively. The purpose is to examine the ef­

fect of sampling on the settling behavior of the slurry. 
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Table 2.1 Details of test conditions 

Initial concentration Initial height Duration 
Type of test Experiment g/1 in. hours 

N-1 75.3 70.75 125.0 

Zone N-2 101.0 70.75 54.4 

settling N-3 147.0 70.75 56.0 

test N-4 191.5 71.00 53.0 

N-5 226.5 71.25 70.3 

W-1 76.0 70.5 45.3 

W-2 99.1 70.5 119.2 
Flocculent / 

W-3 125.0 70.5 141.0 
settling 

W-4 190.0 70.5 53.3 
test 

L-1 20.0 70.5 72.2 

L-2 30.0 70.5 124.3 
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CHAPTER III. PRESENTATION AND 

DISCUSSION OF TEST RESULTS 

The settling behavior of the slurry under the condition of no sample 

extraction is characterized by observing the height of the interface at 

various times in a zone settling test. Alternately, the concentration 

profiles of the slurry at various times are obtained by performing the 

flocculent settling test procedures. The slurry height at various times 

is also observed in flocculent settling test. This chapter describes 

the observations in both zone settling and flocculent settling tests and 

discusses the implications of the test results. The settling curves and 

concentration plots resulting from both types of settling tests are sum­

marized in the Appendix. 

Concentration Profiles 

To precisely and continuously measure the solid concentration along 

the settling column without disturbing the slurry requires elaborate 

testing equipment like the X-ray Transviewer. In this study, however, 

a crude method is employed, i.e., extracting samples from the settling 

column for concentration determination. Hence, the results are used 

only for qualitative analysis. 

Figure 3.1 shows the concentration variation at various time in­

tervals for a slurry with an initial concentration of 99.1 g/1 and results 

are typical of most of the flocculent settling tests. The exceptions are 
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Figure 3.1. Typical concentration profiles resulting from settling test 
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tests with very low Initial concentrations. Initially, the concentration 

is nearly uniform throughout the column, shown by the 0 mln. profile, 

indicating that the air supply at the column base is able to prevent 

particles from accumulating during the column filling period. After the 

test begins, the suspension in the upper portion starts to settle and 

becomes less concentrated than the initial concentration, c^. Tlie super­

natant water left above the falling suspension is turbid partly because 

the finer particles still suspend in water and partly as the result of 

the upward moving particle flux. No interface exists at this time. 

The jostling particle flux will eventually quiet down, the supernatant 

water clears up, and a sharp interface forms. From then on, all the 

particles seem to be locked into a three-dimensional lattice and settle 

as a mass. 

At the column base, however, a high concentration zone is formed 

shortly after the test starts, which shows a high vertical concentration 

gradient. This zone results from the accumulation and consolidation of 

the fast settling floes. As the test progresses, this zone increases 

in both thickness and concentration and finally meets the falling inter­

face . 

The test with low initial concentration, however, displays concen­

tration profiles quite different from those discussed above. Figure 

3.2 shows the results of a test in which c^ is equal to 30 g/1. The 

uniform concentration seems to decrease quickly while, at the column 

base, the high concentration zone forms. Then, the interface forms, and 

particles settle as a mass. 
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Settling Behavior of Interface 

Critical concentration, c^ 

The zone settling test with low initial concentration, c^, reveals 

that a relatively long period of time is required to form the interface. 

The time required to form the interface is inversely proportional to the 

Cj^ used. For example, Table 3.1 shows that the time required for the in­

terface to form is 80 min. in test N-1 (c^ = 75.3 g/1) but 10 min. in 

test N-3 (c^ = 147 g/1). When c^ is higher than 147 g/1, the interface 

forms immediately after the test starts (N-4 and N-5). If self weight 

consolidation begins after the interface is formed, it is concluded that 

a critical concentration, c^, exists in the settling process such that 

the slurry begins to consolidate under its own weight when its concentra­

tion is equal to or higher than c^. The value of c^ depends on the 

Table 3.1. Calculation of critical concentration c 
c 

c. H. t * H 
b 

c 
Test 

i X c c c 

g/1 in. min. in. g/1 

N-1 75.3 70.75 80 34.95 152.4 

N-2 101.0 70.75 70 49.40 144.7 

N-3 147.0 70.75 10 69.60 149.4 

N-4 191.5 71.0 

N-5 226.5 71.25 

^Time required for the interface to form. 

^Critical concentration, is calculated according to c^ = c^H^/H^. 
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material being tested and the settling environment, e.g., column size 

and electrolyte concentration in the suspending medium. 

The approximate value of c^ for a low c^ test can be obtained by 

the following steps. First, observe the slurry height, when the 

sharp interface is formed. Because the test starts with an initial con­

centration c^ and initial height H^, the average concentration of the 

slurry is when the slurry height is Thus, the critical 

concentration c^ can be approximately taken as c^H^/H^. Table 3.1 sum­

marizes the calculation of c s for N-1, N-2 and N-3. The three c 
c c 

values are close and average about 148 g/1. 

Observed settling behavior 

Figure 3.3 shows the settling behaviors of tests N-1, N-3 and N-5, 

in which the observed slurry height, H, is plotted versus square root 

of time, /t. In general, the lower the initial concentration, the 

higher the settling rate. If the test starts with a high c^ (N-5), the 

interface immediately forms, and the settling curve shows an early con­

vex upward portion. However, in the low c^ test (N-1), a period of 

time has elapsed before the interface forms, and the early convex por­

tion is flattened. After passing the early settling period, all curves 

show a concave upward transition period and then become almost linear 

with /t. 

When Figure 3.3 is compared to the theoretical S(T) vs. /T curves 

for the modified self weight consolidation theory, i.e., Figure 1.9, 

it is observed that the shape of the settling curve resulting from the 
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high test is similar to the theoretical curve with high r value, 

whereas the experimental curve from the low c^ test is similar to the 

theoretical curve having low r value. This observation supports the 

hypothesis that the settling behavior of the slurry after the interface 

has formed can be described by the self weight consolidation theory. 

If the slurry height in Figure 3.3 is plotted versus time, t. 

Figure 3.4 results. It is observed that the results of tests N-3 and 

N-5 do not show linear settling behavior in the beginning portion of 

the test, which is in contrast to what Kynch (1952) expected. Linear 

settling behavior only occurs in the early period of the c^ = 75.3 

g/1 (N-1) test before the interface has formed. Hence, Kynch theory is 

not capable of describing the zone settling behavior of the slurry. 

From Figure 3.4, it is also observed that the settling behavior of 

the slurry depends very much on the initial concentration used, and it 

is impossible to obtain the settling behavior of the high c^ test from 

the later portion of the low c^ test because these curves are quite dif­

ferent in shape. Thus, the approach proposed by Talmage and Fitch (1955) 

does not seem correct. 

Effect of Sampling on Settling Behavior 

Low initial concentration test 

The settling curves resulting from two c^ = 75 g/1 tests, one with 

sample extraction (test W-1) and the other without (test N-1), are com­

pared in Figure 3.5. Both curves show that a period of time has elapsed 
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before the interface is formed. The settling behavior of the slurry in 

this period is obtained by observing the falling of the dark zone formed 

due to the concentration difference between the slurry and the turbid 

supernatant water. As can be seen in Figure 3.5, sample withdrawal does 

not produce a discernible effect on the settling behavior in this early 

period but slightly shortens the time required to form the interface, 

t^. Due to the shorter t^, the slurry in test W-1 lags behind in 

settling distance. However, after the interface has formed, sample ex­

traction seems to accelerate the settling of the slurry because the 

slurry height of test W-1 eventually catches up to that of test N-1. 

This behavior is also observed in the comparison of tests N-2 and W-2, 

both having c^ = 100 g/1. 

High initial concentration test 

Tests N-4 and W-4, both with initial concentration about 190 g/1, 

are compared in Figure 3.6. Because the initial concentration is higher 

than the critical concentration (estimated to be about 148 g/1 in pre­

vious section), the interface forms immediately after the test starts. 

It is noticed that the slurry in W-4, the test with regular sample ex­

traction, shows a much higher settling rate than that in test without 

sample withdrawal, i.e., test N-4, indicating sample extraction increases 

the settling rate after the interface has formed. 

Discussion 

The above phenomena can be explained using a sedimentation consolida­

tion mechanism. After the interface has formed, the system is said to 
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be in consolidation regime, where excess pore pressure has built up. 

The insertion of hypodermic needles at various depths creates many 

artificial passageways for pore fluid to escape, and the sample with­

drawal aids the dissipation of excess pore pressure. Both accelerate 

the consolidation rate. However, before the interface forms, particles 

are in sedimentation, and no excess pore pressure exists. Thus, the 

sampling procedures cause only a minor influence on settling behavior. 

This explanation provides indirect evidence that zone settling can be 

considered as a self weight consolidation mechanism. 
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CHAPTER IV. EVALUATION OF COEFFICIENT 

OF CONSOLIDATION, C_ 
r 

In conventional consolidation theory, the prediction of time rate 

of settlement of a consolidating soil layer requires the determination 

of the coefficient of consolidation, c^, for that soil. The coefficient 

of consolidation is a soil parameter which relates the theoretical time 

factor, T, to real time and the thickness of the soil layer, and thus 

applies the consolidation theory to prediction of the behavior of a 

specific soil layer. In self weight consolidation theory, the coef­

ficient of consolidation is designated as C , but it is still the key 
F 

parameter for describing the settling behavior of a slurry consolidating 

under its own weight. 

As described in the previous chapter, the study by Been and Sills 

(1981) shows that the coefficient of consolidation can be measured using 

elaborate instrumentation in a settling column test. However, the 

equipment they used is costly, and the test procedures are time con­

suming and required skilled personnel to perform them. Hence, this ap­

proach is not suitable for conventional engineering design. 

In this chapter, a simplified approach to evaluate the apparent 

coefficient of consolidation, C^, is developed based upon the modified 

self weight consolidation theory by Been and Sills (1981). Because the 

Cp calculation in this approach requires only the zone settling test 

results, density and pore pressure measuring devices are not needed. 
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Development of Methodology 

The coefficient of consolidation, C^, is calculated according to 

Equation 1.37 as: 

T z 
S = -T^ (1-37) 

where z = the modified material height to account for the void 
ratio change at the slurry surface 

T = theoretical time factor of certain percentage of con­
solidation 

t = real clock time corresponding to that percentage of 
consolidation 

Usually, some curve fitting method is employed to relate the theoretical 

time factor T and the real time t. In this study, the square root of 

time fitting method is used. It should be noticed that the basic as­

sumption for the curve fitting method is that the observed settling 

curves are similar in shape to the theoretical ones. Thus, it is neces­

sary to check the validity of this assumption when the curve fitting 

method is applied. The following paragraphs describe the method for 

obtaining the necessary terms in Equation 1.37 to evaluate the C_. 
r 

Modified material height, 

From Equation 1.35, the modified material height z^ can be expressed 

as : 

z = z, + Ce. - e )/3 
o 1 1 o 

(4.1) 



www.manaraa.com

81 

where = actual material height, which can be calculated as ; 

3 = slope of final (i.e., after 100 percent primary consolida­
tion) void ratio distribution 

e. = initial void ratio at the onset of self weight consolida-
^ tion 

e^ = final void ratio at the slurry surface 

For clarification of each term, refer to Figure 1.7. The quantities 

and e^ are related to the initial test conditions; hence, they can 

easily be obtained. Thfe parameters e^ and 3, however, are used to de­

scribe the final void distribution and required more calculations. 

Models for e^ and 3 Been and Sills (1981) plotted e^ and 3 

versus the initial density of the slurry. Nevertheless, it seems more 

appropriate to relate e^ and 3 to the concentration at which self weight 

consolidation starts. All the settling column tests with initial con­

centration, c^, lower than the critical concentration, c^, will start 

the consolidation process at the critical concentration c^ and thus are 

assumed to result in only one set of e^ and 3 after 100 percent primary 

consolidation. Any test with c^ higher than c^ will result in a set 

of e^ and 3 values corresponding to its initial concentration because 

consolidation begins immediately after the test starts. Conceptually, 

there exists a limiting concentration, c^, beyond which a normally con­

solidated soil stratum is formed, and no self weight consolidation occurs. 

Thus, if c. > c , the uniform initial concentration profile is maintained 
i — m 
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because of no self weight consolidation, or 3 • 0 and Between 

the two limits c and c , e and 3 are assumed to be functions of c. 
m c o 1 

only. Many simple functions satisfying the conditions at the limiting 

concentration c were evaluated, but it was found that only the loga-
in 

rithmic function can be successfully applied. Thus, the models for 

describing the variation of e and 3 between c and c are assumed to 
o m c 

be: 

e = e + k„ ln(c /c. ) 
o m 2 mi 

where e = void ratio corresponding to the limiting concentration, 
c , can be calculated as: 
m 

'm • • W - 1 

= proportional constant having a unit of 1/length in order 
to satisfy the dimension equality in Equation 1.35 

kg = dimensionless constant 

Slurry height after 100% primary consolidation, The de­

termination of the critical concentration c has been discussed in 
c 

Chapter III, but to obtain the parameters c^, k^^ and k^ in Equation 4.2 

it is necessary to introduce a quantity which can be measured in the 

settling column test and relates c with k and k„. For this, the slur-
m i z 

ry height after 100 percent self weight consolidation, is chosen. 

Theoretically, is related to e^ and 3 as: 
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Hj^OO = j ^ (1 + + 3z)dz = (1 + (4.3) 

Combining Equation 4.2 with 4.3, the expression for Hq^qq becomes: 

"lOO " [kz'l" "m - 1" =!> + -
m 

Jk (In c - In c.) z ̂  (4.4) 
1 m il 

The quantity for a zone settling test can be estimated from 

the settling curve. First, the observed slurry height is plotted 

against /T. Usually, the later portion of the curve becomes approxim­

ately horizontal; therefore, the slurry height corresponding to this 

horizontal portion is taken as For example, Figure 4.1 shows the 

slurry height vs. /t~curve for test N-3(c^ = 147 g/1), and the H^^qq 

is estimated to be about 18.8 in. 

In order to solve the three unknown quantities c^, k^^ and kg in 

Equation 4.4, at least three zone settling tests on the same material 

should be performed. The e^ and 3 values for any specific test are then 

obtained by Equation 4.2, and the corresponding is calculated by Equa­

tion 4.1. 
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Time factor, T, and real time, t 

The degree of consolidation, S^^T), for the modified self weight 

consolidation theory is given by Equation 1.48 and can be simplified as: 

E j - £-52|_to 1 . n . 1 

• ",fslnMr" r cos Mr] 

2 
where T = C„ • t/z 

r O 

M = mil" = i(2n + l)Tr n = 0, 1, 2 .... 

r -

Thus, S (T) is a function of both time factor T and the ratio r. For a 
m 

specific test, and z^, and therefore r, can be obtained by the ap­

proach discussed in the previous section. Knowing the value of r, a 

theoretical S^(T) vs. /T curve corresponding to this test results. 

To illustrate /t - fitting method, the results of test N-3 are 

used as an example. The observed slurry height for this test is plotted 

against /t in Figure 4.2. Because r value for this test is about 0.22, 

the theoretical S (T) vs. /T curve for r = 0.22 is constructed from 
m 

Equation 4.5 as in Figure 4.3. The following procedures are performed 

to obtain both T and t for 90 percent self weight consolidation of the 

slurry: 

1. On the theoretical curve, e.g., Figure 4.3, locate the 
inflection point, B, and draw a tangent line through B 
to intersect the 0 percent horizontal line at point, A. 

2. Find the 90 percent consolidation point, P, on the 

theoretical curve. The time factor for 90 percent 
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consolidation is obtained by reading the T-coordinate 
for point P. For r = 0.22, 

Tgg = (0.657)2 = 0.432 

3. Connect points A and P, and estimate the ratio, R, of the 
slope of line AP to that of the tangent line AB. In this 
example, R = 3.94. 

4. On the experimental zone settling curve, e.g.. Figure 4.2, 
locate the starting point of self weight consolidation, 
H, i.e., the height at which the interface forms, and 
draw a horizontal line HH' through it. Line HH' is the 
experimental 0 percent consolidation line. 

5. Draw a tangent line through the inflection point, B', of 
experimental settling curve to intersect line HH' at 
point A'. 

6. From point A' on the experimental curve, draw a straight 
line A'P', having a slope R times the tangent line A'B' 
to intersect the settling curve at point P'. Experimental 
point P' corresponds to the theoretical time factor when 
the slurry reaches 90 percent self weight consolidation, 
and the corresponding time is t_Q. In the low c^ test, 
the time required for slurry to reach the critical con­
centration should be subtracted from the obtained tg^ 
to yield a modified one. In other words, the origin of 
the height vs. /t plot needs to be adjusted to eliminate 
the time for sedimentation. In this example, the modified 
tgg = 7797 min. 

After z^, Tgg and tg^ are determined, the coefficient of consolidation 

C„ for the test can be calculated according to Equation 1.37. It is 
r 

observed that the value of varies with test conditions such as ini­

tial concentration, column size, initial slurry height, etc. 

Summary of Procedures for Determining 

To evaluate the apparent coefficient of consolidation C^, the 

following steps should be followed. 



www.manaraa.com

89 

Perform zone settling tests at different selected ini­
tial concentrations, ranging from 20 g/1 to 200 g/1. 
At least two low c. tests are needed to obtain the 
critical concentration Cg, and additional three tests with 
Ci > c„ are required to determine the three constants c , 
1 • j i m 

and kg. 

Plot the observed slurry height, H, versus /t curves 
separately for each test. 

Estimate the quantity H^oO each test from the 
corresponding H vs. /t curve. 

Establish three experimental simultaneous, equations ac­
cording to Equation 4.4 using three sets of z., c and Ĥ qq 
values, which are the results of three tests with c^ > 
c and solve for c , k, and k„. 
c ml 2 

The e^j and 3 values for any c^ between c^ and Cg can be 
obtained by Equation 4.2. It should be noticed that all 
the tests with c^ lower than Cg will start the consolida­
tion process at the concentration c^, and therefore re­
sult in only one set of e^ and 3. 

The modified material height z is determined from; z^ = 
Zl + (ei - Bq)/ 3, and r = zi/zq. For all the c^ < Cq 
tests, ej[ is considered as the average void at the onset 
of self weight consolidation, i.e., ei = (Gg •Yw/'^c) ~ 1 
for Ci < Ce tests. 

For each test, construct a theoretical S (T) vs. /T curve 
based on the appropriate r value, and determine Tgo and 
tgo by the curve fitting procedures discussed in the pre­
vious section. 

The apparent coefficient of consolidation Cj, is calculated 
according to: 
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Sample Calculations 

The test results of the five zone settling tests, N-1 to N-5, are 

used for calculations. Test conditions and observations are listed 

in Table 4.1. Following the procedures prescribed for determination, 

the results for each step are: 

1. Three low c^ tests N-1, N-2 and N-3 result in a critical 
concentration about 148 g/1. 

2. The slurry height vs. /t plots for each test are shown 
in the Appendix. 

3. The values of resulting for each test are listed 
in Table 4.1. 

4. Because the initial concentrations used in the tests N-1, 
N-2 and N-3 are all smaller than Cq, these three tests 
yield only one set of Bq and 3 values corresponding to 
Cc = 148 g/1. Three simultaneous equations can be set 
up by putting the HiqC of each of the three tests 
in Equation 4.3, i.e., 

test N-1: 10.5 = (1 + e ) • 1.9443 - (1.9443)^ (4.7a) 

test N-2: 13.3 = (1 + e^) • 2.6079 - i«3*(2.6079)^ (4.7b) 

test N-3: 18.8 = (1 + e^) . 3.7957 -i'3'(3.7957)^ (4.7c) 

Only two of the above equations are needed to solve for 
eg and g. The third equation, however, can serve as a 
check to see if the model is suitable. For example. Equa­
tions 4.7a and 4.7b yield: 

e = 5.3 
o 

3 =0.91 in. ^  for c^ =  148 g/1 

If this set of values is used to predict the H^^qq for 
test N-3, the result is: 

Hioo = (l + e^) ' 3.7957 -i'3'(3.7957)2 = 17.3 inch. 
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Table 4.1. Summary of the conditions and results of zone settling tests 

Test 
Ci 

g/1 

Hi 

in. in. 

^100 

in. 

=i e 
o 

3 

in.-l 

z 
o 

in. 

r 

N-1 75.3 70.75 1.9443 10.5 17.5 5.3 0.91 15.4 0.13 

N-2 101.0 70.75 2.6079 13.3 17.5 5.3 0.91 16.1 0.16 

N-3 147.0 70.75 3.7957 18.8 17.5 5.3 0.91 17.3 0.22 

N-4 191.5 71.0 4.9622 26.0 13.3 5.7 0.64 16.8 0.30 

N-5 226.5 71.25 5.8898 32.8 11.1 5.9 0.47 16.9 0.35 

^z^ is calculated using = 2.74. 
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which is close to the observed value of 18.8 inch. 
The obtained e and 3 values can then be used to-

gather with Equation 4.2, and two equations are generated: 

5.3 = e + k._(ln c - In 148) (4.8a) 
m Z m 

0.91 = (In c - In 148) (4.8b) 
i. m 

An additional equation can be obtained using the results 
of test N-5 and Equation 4.4, i.e., 

32.8 = (k-(ln c - In 226.5) +• 
** z in c ' 

m 

5.8898 - i'k^(ln c^ - In 226.5)(5.8898)^, 

where G = 2.74 according to the result of specific test 
on the sediments used. 
yield the solutions of; 
on the sediments used. Equations 4.8a, 4.8b and 4.8c 

c = 360 g/1 
m 

kĵ  = 1.02 in.'l 

k^ = -1.50 

The observed of test N-4 has not been used in the 
above calculations; hence, it can serve as a check. 
Using the obtained constants, the for test N-4 is 
predicted as : 

Hioo = (-1.50(ln 360 - In 191.5) +^^1 * 4.9622 

-i • 1.02(ln 360 - In 191.5) • (4.9622)^ 

= 25.1 in. 

which is close to the observed value of 26.0 in. with about 
3.5 percent error. Hence, the logarithmic model used for 
describing the variation of e and 3 with concentration 
seems suitable. 
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5. The values of e^ and g for each test are calculated and 
listed in Table 4.1. 

6. The modified material height and ratio r are obtained 
and also listed in Table 4.1. It is noticed that as the 
Ci increases, the r value also increases. 

7. Figure 4.4 shows the S (T) vs. /T curves for different 
r values corresponding to different tests. It is observed 
that when r becomes smaller, the initial convex upward 
portion of the theoretical curve gradually flattens. This 

trend is also observed in zone settling curves as ci de­
creases (see Figure 3.3). Because the results in step 
6 indicate that a lower c^ test results in a lower r value, 
it can then be concluded that the varying trend of the 
theoretical curves is identical to that of the settling 
curves. Thus, the assumption of the curve fitting method 
is approximately satisfied, and the method is appropriate 
for use. For each test, the /t - fitting method yields 
a set of Tgg and t^^ values, which are listed in Table 4.2. 

8. The apparent coefficient of consolidation C for each 
test is calculated, and the results are also listed in 
Table 4.2. 

Table 4.2. Calculation of the coefficient of consolidation. 
S 

Test 
Ci z 

o *^90 T90 S 
Test 

*^90 T90 

g/1 in. min. 
2 

in. /min. 

N-1 75.3 15.4 497 0.215 0.103 

N-2 101.0 16.1 2052 0.298 0.038 

N-3 147.0 17.3 7797 0.432 0.017 

N-4 191.5 16.8 7744 0.545 0.020 

N-5 226.5 16.9 5730 0.608 0.030 
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CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The findings of this study are the following; 

1. The classical theories used by mining or chemical 
engineers for describing the settling mechanism of 
particles in a fluid emphasized entirely on the "sedi­
mentation" phenomenon in which the weight of particles 
is solely supported by hydrodynamic forces, and 
neglected that particles will eventually come into con­

tact, develop effective stresses and consolidate under 
their own weight. Hence, the theories are not adequate 

for studying the settling behavior of the slurry in a 
containment area. 

2. The WES interpretation of the settling column test re­
sults separates zone settling behavior from consolida­
tion processes. This study indicates that zone settling 
behavior of the slurry is the result of self weight con­
solidation. In addition, if the time rate settlement 
of dredge materials is predicted according to the one-
dimensional consolidation theory, as in the WES ap­
proach, the settling rate in the early consolidation 
period will be overestimated. 

3. The interface, separating the clear supernatant water 
from the particle laden water, will not form in the 
tests with low initial concentration unless the average 
concentration of the slurry has reached certain value, 
i.e., critical concentration. 

4. The self weight consolidation theory, developed by Lee 
and Sills (1981) and modified by Been and Sills (1981), 
is used to describe the zone settling behavior in this 
study. This study shows that the ratio, r, of actual 
to modified material height relates the theoretical con­
solidation curves to corresponding zone settling curves. 

5. Based on the modified self weight consolidation theory, an 
approach for estimating the apparent coefficient of con­
solidation Cp, utilizing primarily the results of the 
settling column test, is feasible. The method should 
not only facilitate the test procedures for estimating 
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the Cp, but also yield a better prediction of the Cp be­
cause the method precisely defines the point at which 
self weight consolidation begins. 

Recommendations for Future Study 

Successful application of the large strain consolidation theory, 

i.e.. Equation 1.17, depends very much on the reasonable assumptions 

of the permeability, K, vs. the void ratio, e, and the effective 

stress, a', vs. e relationships. Though the linear R vs. e and o' 

vs. e relationships assumed by Lee and Sills (1981) facilitate the 

solving of the highly nonlinear differential equation (Equation 1.17), 

both assumptions can not be justified by the experimental results. 

Further study on these two relationships is needed. The following 

assumptions might make the model a better approximation of reality. 

1. According to Equation 1.41, the permeability of soil 
seems to vary linearly with e3/l + e instead of 1 + e 
as assumed by Lee and Sills. 

2. Been and Sills (1981) found that when the effective stress 
a' is very low, the a' vs. e relationship is not unique. 
Because the behavior of e in low effective stress range 
associates with the phenomenon of creep or viscous flow, 
a thermodynamic model might be needed for the study of 
the a' vs. e relationship. 
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APPENDIX. TEST RESULTS 

Results of Zone Settling Tests 

The slurry height at various times was observed during the settling 

column test without sample extraction. In Figures A-1 to A-5, the ob­

served slurry height, H, is plotted versus /t, and the slurry height 

corresponding to 100 percent self weight consolidation, for each 

test is estimated. In addition, the t^g for each test results by apply­

ing the /t-fitting method. 
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Figure A-2. The H vs. /t plot for test N-2 
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Figure A-3. The H vs. /t plot for test N-3 
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Figure A-4. The H vs. /t plot for test N-4 
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Test N-5, ĉ = 226,5 g/l 

Slope ratio R= 2.8? 

(75.7f= 5730 ain. 

20 

0 10 40 20 30 60 50 80 70 90 

/Else, nin. 

Figure A-5. The H vs. /t plot for test N-5 
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Results of Flocculent Settling Tests 

Slurry samples were regularly withdrawn from the column for con­

centration determinations in flocculent settling tests. Figures A-6 to 

A-11 show the concentration profiles at various times for the settling 

tests with different initial concentrations. The slurry height, H, was 

also observed regularly in these tests, except for the two tests with 

very low initial concentration L-1 and L-2, and H is plotted versus /1 

in Figures A-12 to A-15. 
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Figure A-6. The concentration profiles resulting from test W-1 
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Figure A-7. The concentration profiles resulting from test W-2 
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Figure A-8. The concentration profiles resulting from test W-3 
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Figure A-9- The concentration profiles resulting from test W-4 
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Figure A-10. The concentration profiles resulting from test 1—1 
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Figure A-11. The concentration profiles resulting from test L-2 



www.manaraa.com

Test W-1, c.= 76 g/l 

•g, 

jTime, rain. 

Figure A-12. The H vs. /t plot for test W—1 
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Figure A-13. The H vs. /t plot for test W-2 
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Figure A-14. The H vs. yt plot for test W-3 
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Figure A-15. The H vs. /t plot for test W—4 
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